Robust Jerk Limited Time Optimal Control

Introduction

Jerk is an indicator of the time-rate of change of inertia forces and thus a measure of the impact levels that can excite unmodeled dynamics. The unmodeled dynamics are of special concern to the designer. Energy deposited in these modes is hard to extract from the system. Therefore, it is advantageous to deposit as little energy as possible in these modes.

Jerk limited profiles also benefit from their smoother shape compared to the profiles generated without constraints on the magnitude of jerk. In particular, the acoustic noise is reduced as is the wear on the mechanical parts of the system. Because of the restriction on the maximum amount of acceleration, less force or momentum is required and thus smaller actuators can be used.

In this article, the jerk limited control of the Floating Oscillator benchmark problem is investigated. The remainder of the article is divided into four sections, dealing with certain aspects of this control. The article is concluded by a Java applet, which illustrates the proposed control design.

Problem Formulation

The control sequences are designed such that they can be executed in minimum time. The control profile is constrained by

and the geometric boundary conditions

,

where the dynamics of the system are given as

.

These aforementioned constraints account for limitations imposed by the actuator as well as the limit on the time-rate of change which was introduced to lessen the excitation of higher frequency modes.

Results

In this section, the control design has been carried out for an undamped Floating Oscillator, as shown in Figure 1. Some of the results are presented in this section, a more detailed development and analysis of results can be found in the materials cited in the section on references shown at the bottom of this page.

The parameters of the Floating Oscillator, i.e. the masses and the spring stiffness, are all set to unity for the numerical results presented in this section. The maneuver under consideration will result in unit displacement of the center of gravity. Figure 2 shows the effect of the jerk limitation on the switching times. As can be seen from the diagram, the shape of the control profile changes quite significantly depending on the maximum permissible jerk.

The frequency spectra of an infinite jerk and a jerk limited control profile are compared. In order to evaluate the spectrum, a Fourier transform of the input signal is carried out. The results are shown in Figure 3.

The diagram reveals that the high frequency content of the jerk limited control profile is much smaller than that of the infinite jerk control profile. This means that by limiting the jerk, the excitation of the higher frequency modes has been reduced as was one of the primary goals of this design method.

Java Applet for Simulation

Below is an applet which illustrates the different control profiles. The spring stiffness can be chosen by using the rightmost drop-down list. The other drop-down list allows the selection of the control profile. The Start button starts the simulation. The Stop button can be used to stop the simulation at any point in time. Before selecting a new control profile or spring stiffness, the simulation must have stopped.

Related Publications
1Marco Muenchhof: Robust Jerk Limited Control of Flexible Structures. Master Thesis at the State University of New York, University at Buffalo, Buffalo, NY, USA. Language: Englisch
4Marco Muenchhof and Tarunraj Singh: Jerk Limited Time Optimal Control of Flexible Structures. Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2001. Language: Englisch
5Marco Muenchhof and Tarunraj Singh: Jerk Limited Time Optimal Control of Multi-Input Systems. Proceedings of the 2002 American Control Conference, American Automatic Control Council, 2002. Language: Englisch
6Marco Muenchhof and Tarunraj Singh: Minimax Robust Jerk Limited Control of Flexible Structures. Proceedings of the CSME Forum 2002, Canadian Society of Mechanical Engineers, 2002. Language: Englisch
7Marco Muenchhof and Tarunraj Singh: Concurrent Feed-Forward/Feed-Back Controller Design Using Time Delay Filters. Proceedings of the AIAA Guidance, Navigation and Control Conference, American Institute of Aeronautics and Astronautics, 2002. Language: Englisch
9Marco Muenchhof and Tarunraj Singh: Desensitized Jerk Limited Time Optimal Control of Multi-Input Systems. Journal of Guidance, Control, and Dynamics, 25(3), 2002. Language: Englisch
10Marco Muenchhof and Tarunraj Singh: Near Minimax Robust Control of Flexible Structures. Proceedings of the 2003 American Control Conference, American Automatic Control Council, 2003. Language: Englisch
13Marco Muenchhof and Tarunraj Singh: Jerk Limited Time Optimal Control of Flexible Structures. Journal of Dynamic Systems, Measurement and Control, , 2003. Language: Englisch
22Tarunraj Singh and Marco Muenchhof: Closed-form minimax time-delay filters for underdamped systems. Optimal Control Applications and Methods, 28(3), 2007. Language: Englisch
Note: All downloads are password protected.

See also the sister pages at code.eng.buffalo.edu/.